MATHEMATICS

একটি বিজোড় পূর্ণসংখ্যার বর্গের আকার হবে

(A)
$$2k + 1$$

(B)
$$4k + 1$$

(C)
$$6k + 1$$

$$(B)$$
 $8k+1$,

যেখানে k যে কোন পূর্ণসংখ্যা।

Square of any odd integer is of the form

(A)
$$2k+1$$

(B)
$$4k + 1$$

(C)
$$6k+1$$

$$(b)$$
 $8k+1$,

where k is any integer.

যে কোন জটিল রাশি z-এর জন্য, $z\overline{z}=0$ হবে যদি এবং কেবলমাত্র যদি $(\chi+i4)(\chi-i4)=\chi^2+\chi^2=0$

(A)
$$\operatorname{Re} z = 0$$

(B)
$$\operatorname{Im} z = 0$$

(C)
$$z + \overline{z} = 0$$

$$(B) z = 0$$

For any complex number z, $z\overline{z} = 0$ if and only if

(A)
$$\operatorname{Re} z = 0$$

(B)
$$\operatorname{Im} z = 0$$

(C)
$$z + \overline{z} = 0$$

$$z = 0$$

যদি m এবং n পরস্পর মৌলিক না হয়, তবে $x^m-1=0$, $x^n-1=0$ সমীকরণ দুটির সাধারণ সমাধানের সম্ভাব্য সংখ্যা

(A) apillo (more than one)

(B) একটি

(C) একটিও নয়

(D) দুটি।

If m and n are not prime to each other, the possible number of common roots of NM1 = (M-1) (NM-1+ xm-2 ... +1) the equations $x^m - 1 = 0$, $x^n - 1 = 0$ is

more than one

one

(C) = 0

(D) two

 $= 100 6 + 3 + 2 = \frac{11}{6} 1 + \frac{1}{6} + \frac{1}{3} + \frac{1}{4} = \frac{(1 + \frac{1}{14})^{1/2}}{11} = \frac{25}{12} = 2\frac{1}{12}$ $= 5 \frac{1100}{6 - 3} = \frac{1}{3} \frac{6}{4} = \frac{2}{3} \frac{6}{4} = \frac{3}{2}$ যদি $n \ge 2$ হয়, তবে $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ -এর মান

(A)
$$\leq \sqrt{2n-3}$$

(B)
$$> 2n$$

$$(C) > \frac{2n}{n+1}$$

(D)
$$<\frac{2n}{n+1}$$

111219

If $n \ge 2$, then the value of $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is

$$(A) \leq \sqrt{2n-3}$$

$$\sqrt{(e)} > \frac{2n}{n+1}$$

(D)
$$< \frac{2n}{n+1}$$

দুটি ধনাত্মক সংখ্যা a এবং x-এর জন্য $ax + \frac{a}{x}$ -এর সবনিম্ন মান

(A)
$$a^2$$

(B)
$$\sqrt{2}a^2$$

$$(-2) \cdot \frac{1}{2} = \frac{2}{2^3}$$

For any two positive numbers a and x, least value of $ax + \frac{a}{x}$ is

(A)
$$a^2$$

(B)
$$\sqrt{2}a^2$$

মদি a, b, c তিনটি অসমান সংখ্যা হয় এবং $\begin{vmatrix} 0 & x-a \\ x+a & 0 \\ x+b & x+c \end{vmatrix}$

$$\begin{vmatrix}
0 & x-a & x-b \\
x+a & 0 & x-c \\
x+b & x+c & 0
\end{vmatrix} = 0$$
 হয় তবে x-এর মান

If a, b, c are three unequal numbers and $\begin{vmatrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{vmatrix} = 0$, then x is

$$(\dot{A})$$
 a

I যদি 2×2 একক মাটিন্ন হয় এবং $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ হলে, A^2 হবে $A - 2\Gamma = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ (A) 4A - 3I $\begin{pmatrix} 3 & -4 \\ -4 & 8 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix}$ (B) 3A - 4I $\begin{pmatrix} 2 - 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 - 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 5 \\ -4 & 5 \end{pmatrix}$

$$A-2\underline{\Gamma} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

$$3A - 4I$$

(D)
$$A+I$$

If I be the 2 × 2 identity matrix and $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, then A^2 is equal to

$$(A)$$
 $4A-31$

(C)
$$A-I$$

(D)
$$A+I$$

প্ত. যদি
$$A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}$ এবং $A^2 = B$ হয়, তবে α -এর মান (A) 1 $\begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} \alpha$

If $A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}$ and $A^2 = B$, then value of α is

(A) 1

(C) 4

(D) does not exist.

w একটি সসীম মাত্রার ভেক্টর স্পেসের প্রকৃত সাবস্পেস হলে

dimW ≮ dimV (A)

(B) $\dim W \leq \dim V$

(C) $\dim W \leq \dim V$

(D) $\dim W = \dim V$

If W be a proper subspace of a finite dimensional vector space, then

 $\dim W \not \leq \dim V$ (A)

 $\dim W \nleq \dim V$ (B)

 $\dim W \leq \dim V$

(D) $\forall \dim W = \dim V$

$$\begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$$
 ম্যাটিক্সটির eigenvalue-র সমষ্টি

 $\begin{array}{c|c}
4 & | = 0 \Rightarrow (5-1)(2-1) - (=0) \\
2-1 & \Rightarrow | 10 - 51 - 21 + 12 - 4 = 0 \\
\Rightarrow 6 - 71 + 12 = 0
\end{array}$

(A)

(B)

(C)

(D)

The sum of the eigenvalues of the matrix $\begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$

(A)

UB)

(C)

 $x^2 - 6xy + 9y^2 + 3x - 9y - 4 = 0$ সমীকরণটি যে সরলরেখা দুটিকে নির্দেশ করে তাদের মধ্যে দূরত্ব

(C) $\sqrt{\frac{5}{2}}$

(D) $\frac{1}{\sqrt{10}}$

The distance between the pair of lines represented by the equation $x^2 - 6xy + 9y^2 + 3x - 9y - 4 = 0$ is

(B) $\frac{1}{2}$

(D) $\frac{1}{\sqrt{10}}$

পূর্ণসংখ্যার সেট Z হল যোগ (+) এবং গুণের (.) সাপেক্ষে

- একটি রিং কিন্তু ফিল্ড নয়
- একটি ফিল্ড কিন্তু রিং নয় (B)

একটি রিং এবং ফিল্ড

রিং এবং ফিল্ড কোনোটিই নয়।

111219

The set of integers Z is w.r.t. addition (+) and multiplication (.) A ring but not a field a field but not a ring .(B)

- (C) a ring and a field
- neither a ring nor a field. (D)

g:R o R এবং h:R o R দুটি প্রদত্ত অপেক্ষক, যেখানে R বাস্তব সংখ্যার সেট এবং g(x) = x + 3, $h(x) = x^2 + x - 1$, $x \in R$. তবে $g\{h(-20)\}$ -এর মান

(A) 382

(B) $\cdot -7123$

(C) 422

(D) 551

Let $g: R \to R$ and $h: R \to R$ be two given functions where R is the set of real numbers and g(x) = x+3, $h(x) = x^2 + x-1$, $x \in R$. Then $g\{h(-20)\}$ is equal to

382

- (B) -7123
- h(-20)= 400 -21=379+3=382

(C) 422

(D) 551

একটি relation ρ পূর্ণসংখ্যার সেট Z-এর উপর সংজ্ঞায়িত, $\rho=\{(a,b)\in Z\times Z\ |\ |a-b|\le 5\}.$ তবে এই relation-টি

(A) transitive

- reflexive এবং symmetric
- transitive কিন্তু symmetric নয়
- (D) reflexive নয়।

A relation ρ is defined on the set of integers Z so that $\rho = \{(a,b) \in Z \times Z \mid |a-b| \le 5\}$. Then the relation is

(A) transitive

- (B) reflexive and symmetric
- transitive but not symmetric
- (D) not reflexive.

যদি $|\stackrel{\rightarrow}{\alpha}|=10$, $|\stackrel{\rightarrow}{\beta}|=1$ এবং $\stackrel{\rightarrow}{\alpha}\cdot\stackrel{\rightarrow}{\beta}=6$ হয়, তবে $|\stackrel{\rightarrow}{\alpha}\times\stackrel{\rightarrow}{\beta}|$ -এর মান

(A)

- (B) 4
- は水が(で水を)(で水を) えな

(C)

- (D) 8

If $|\alpha| = 10$, $|\beta| = 1$ and $|\alpha| = 6$, then value of $|\alpha| \times |\beta| = 6$

(A)

(C)

যদি $\sum a_n$ একটি অ-ঋণাত্মক পদের অসীম শ্রেণী হয় এবং $\overline{lim}\ a_n^{1/n}=p$, তবে $\sum a_n$ অভিসারী শ্রেণী হবে যখন,

(A) p < 1

(B) $p \leq 1$

p > 1

p = 1

111219

6 of 24

19.

If $\sum a_n$ be an infinite series of non-negative terms and $\overline{\lim} a_n^{1/n} = p$, then $\sum a_n$ is convergent if

$$(A)$$
 $p < 1$

(B)
$$p \le 1$$

(C)
$$p > 1$$

(D)
$$p = 1$$

17. যদি $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-p}{2}$ সরলরেখাটি 2x-4y+z=7 সমতলে থাকে তবে p-এর মান

(A)
$$-7$$

If the line $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-p}{2}$ lies on the plane 2x-4y+z=7, then value of p is

 $\sqrt{28.} \ 2x^2y + 3yz = 4$ পৃষ্ঠতলের (1,-1,-2) বিন্দুতে একক অভিলম্ব একটি ভেক্টর হবে

$$\frac{1}{\sqrt{41}}(+4\hat{i}+4\hat{j}+3\hat{k})$$

(B)
$$\frac{1}{\sqrt{41}} (+4\hat{i}+4\hat{j}-3\hat{k})$$

(B)
$$\frac{1}{\sqrt{41}}(+4\hat{i}+4\hat{j}-3\hat{k})$$
 $\vec{N} = \frac{3700}{3700}$

(C)
$$\frac{1}{\sqrt{41}} (-4\hat{i}+4\hat{j}+3\hat{k})$$

(D)
$$\frac{1}{\sqrt{41}}(-4\hat{i}-4\hat{j}+3\hat{k})$$

A unit normal vector to the surface $2x^2y + 3yz = 4$ at (1, -1, -2) is

(A)
$$\frac{1}{\sqrt{41}} (+4\hat{i}+4\hat{j}+3\hat{k})$$

(B)
$$\frac{1}{\sqrt{41}} (+4\hat{i}+4\hat{j}-3\hat{k})$$

(C)
$$\frac{1}{\sqrt{41}} \left(-4\hat{i} + 4\hat{j} + 3\hat{k} \right)$$

(D)
$$\frac{1}{\sqrt{41}}(-4\hat{i}-4\hat{j}+3\hat{k})$$

19. যদি
$$\lim_{x \to \infty} \left[\frac{x^2 + 1}{x + 1} - ax - b \right] = 0$$
 হয়, তবে (a, b) হবে

If
$$\lim_{x \to \infty} \left[\frac{x^2 + 1}{x + 1} - ax - b \right] = 0$$
, then (a, b) is

$$\frac{2\pi}{1} - a = 0 \Rightarrow a = 0$$

$$\frac{2\pi}{1} - a \times (n+1) - b(n+1)$$

$$\frac{2\pi}{1} - a \times (n+1) - b(n+1)$$

$$\frac{2\pi}{1} - a(2\pi+1) - b(1) = 0$$

$$\frac{2\pi}{1} - a(2\pi+1) - b(1) = 0$$

$$\frac{1+2\pi}{1} - \frac{2\pi}{2\pi} - \frac{2\pi}{2\pi}$$

$$\frac{1+2\pi}{1} - \frac{2\pi}{2\pi} - \frac{2\pi}{2\pi}$$

$$\frac{1+2\pi}{1} - \frac{2\pi}{2\pi} - \frac{2\pi}{2\pi}$$

$$\frac{1+2\pi}{1} - \frac{2\pi}{2} - \frac{2\pi}{2}$$

$$\frac{1+2\pi}{1} - \frac{2\pi}{2} - \frac{2\pi}{2}$$

$$\frac{1+2\pi}{2} - \frac{2\pi}{2} - \frac{2\pi}{2} - \frac{2\pi}{2}$$

্ৰ 20. যদি
$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
 এবং $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ সরলরেখাদুটি পরস্পারকে ছেদ করে.

তবে k-এর মান

(A)
$$\frac{2}{9}$$

(B)
$$\frac{9}{2}$$

If the two lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect each other, then value of k is

(A)
$$\frac{2}{9}$$

21. যে সকল বৃত্ত x-অক্ষকে মৃল বিন্দুতে স্পর্শ করে তাদের অন্তর্কল সমীকরণ

(A)
$$(x^2 + y^2)y_1 = xy$$

(B)
$$(x^2 + y^2)y_1 = 2xy$$

(C)
$$(x^2 - y^2)y_1 = xy$$

(D)
$$(x^2 - y^2)y_1 = 2xy$$

The differential equation of all circles touching x-axis at origin is

(A)
$$(x^2 + y^2)y_1 = xy$$

(B)
$$(x^2 + y^2)y_1 = 2xy$$

(C)
$$(x^2 - y^2)y_1 = xy$$

$$(x^2 - y^2)y_1 = 2xy$$

্ 22. যদি $A_n=\left(-rac{1}{n},rac{1}{n}
ight)$, $n\in N$ (N ধনাত্মক পূর্ণসংখ্যার সেট) বাস্তব সংখ্যার সেট R-এর সাবসেট হয়,

তবে $\bigcap_{n=1}^{\infty} A_n$ সেটটি

(B)

If $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, $n \in \mathbb{N}$ (N is the set of positive integers) be a subset of the set of

real numbers R, then the set $\bigcap_{n=1}^{\infty} A_n$ is

(A) not open

(B)

(C) closed

(D) both open and closed.

111219

28. N^+ যদি ধনাত্মক পূর্ণসংখ্যার সেট হয় এবং $f:N^+\to N^+$ একটি mapping যেখানে f(x)=2x, $x \in \mathbb{N}^+$, তবে f mapping টি

(A) injective

(B) surjective

(D) bijective.

injective বা surjective কোনোটিই নয়

Let N^+ be the set of positive integers and $f: N^+ \to N^+$ be a mapping defined by

f(x) = 2x, $x \in N^+$. Then mapping f is

(A) injective

(B) surjective

(C) neither injective nor surjective

(D) bijective.

24. $x^2 \frac{d^2 y}{dx^2} - 2x(1+x)\frac{dy}{dx} + 2(1+x)y = x^3$ এই অন্তর্নল সমীকরণটির একটি particular

সমাধান হল

(A)
$$-\frac{x^2}{2} - \frac{x}{4}$$

(B)
$$-\frac{x^2}{2} + \frac{x}{4}$$

(C)
$$\frac{x^2}{2} - \frac{x}{4}$$

(D)
$$\frac{x^2}{2} + \frac{x}{4}$$

A particular solution of the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} - 2x(1+x)\frac{dy}{dx} + 2(1+x)y = x^{3}$$
 is

$$(A) - \frac{x^2}{2} - \frac{x}{4}$$

$$-\frac{x^2}{2} + \frac{x}{4}$$

(C)
$$\frac{x^2}{2} - \frac{x}{4}$$

(D)
$$\frac{x^2}{2} + \frac{x}{4}$$

25 যদি $\frac{\mathrm{d}p}{\mathrm{d}t}=\frac{1}{2p}$ হয় এবং p=1 যখন t=0, তবে p=3 হবে যদি t-এর মান হয়।

(D)

If $\frac{dp}{dt} = \frac{1}{2p}$ and p = 1 when t = 0, then p = 3, when t is

dp = 1 => 2pdp=d+

(A) 4

UB) 8

カンデニナナム

(C) 1

(D)

111219

>> p~=++c >> 1 = 0+c > c=19 of 24 (p~=++1) p=\[++1 = 0

Scanned by CamScanner

y (A)
$$2 - \frac{3}{2}i$$

(B)
$$\frac{3}{2} - 2i$$

$$(C) \frac{3}{2} + 2i$$

(D)
$$\frac{1}{2} - 2i$$

If for a complex number z, |z|-z=1+2i, then the value of z is

(A)
$$2 - \frac{3}{2}i$$

$$4B \int \frac{3}{2} - 2i$$

(C)
$$\frac{3}{2} + 2i$$

(D)
$$\frac{1}{2} - 2i$$

27. একটি রৈখিক প্রোগ্রামিং সমস্যায় degeneracy উদ্ভূত হয়

- (A) কেবলমাত্র প্রথম ইটারেশনে
- চুড়ান্ত ইটারেশনে
- যে কোন ইটারেশনে
- (D) প্রথম বা দ্বিতীয় ইটারেশন বাদ দিয়ে পরবর্তী কোন ইটারেশনে। In an LPP degeneracy arises at
- (A) first iteration only
- final iteration
- (C) any iteration
- (D) excepting first and second, any other iteration.

28. তিনটি অশ্ন্য ভেক্টর \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} -এর জন্য $(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$ হলে

(A)
$$\overrightarrow{a}$$
 ভেক্টর $\overrightarrow{b} \times \overrightarrow{c}$ -এর উপর লম্ব

(B)
$$\stackrel{\rightarrow}{a}$$
 এবং $\stackrel{\rightarrow}{b} \times \stackrel{\rightarrow}{c}$ সমরেখ

(C)
$$\overrightarrow{b}$$
 ভেক্টর $\overrightarrow{a} \times \overrightarrow{c}$ -এর উপর লম্ব .

(D)
$$\overrightarrow{b}$$
 এবং $\overrightarrow{a} \times \overrightarrow{c}$ সমান্তরাল।

If for any three non-null vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , $(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$ then

- (A) vector \overrightarrow{a} is perpendicular to $\overrightarrow{b} \times \overrightarrow{c}$
- \overrightarrow{a} and $\overrightarrow{b} \times \overrightarrow{c}$ are collinear
- (C) vector \overrightarrow{b} is perpendicular to $\overrightarrow{a} \times \overrightarrow{c}$
- (D) \overrightarrow{b} and $\overrightarrow{a} \times \overrightarrow{c}$ are parallel.

111219

29. f(x) = 2x + |x - 1| অপেক্ষকটি x = 1 বিন্দৃতে

(A) অন্তরকলনযোগ্য

- (B) সম্ভত
- (C) অন্তরকলনযোগ্য নয় এবং মান অসীম
- (D) মান (0, 2) মুক্ত অন্তরে সর্বনিম্ন।

The function f(x) = 2x + |x-1| at x = 1 is

- (A) differentiable
- (塔) continuous
- (C) not differentiable and has infinite value
- (D) minimum in open interval (0, 2).

 3θ . $\frac{3}{r} = 4 - 2\cos\theta$ কণিকটির উৎকেন্দ্রতা

(A) $\frac{1}{2}$

(B) $\frac{1}{4}$

(C) $\frac{2}{3}$

(D) $\frac{3}{2}$

The eccentricity of the conic $\frac{3}{r} = 4 - 2\cos\theta$ is

 $\frac{1}{2}$

(B) $\frac{1}{4}$

(C) $\frac{2}{3}$

(D) $\frac{3}{2}$

 $\sqrt{31}$. যদি $S = \{(x,y,z) \in E^3 : x+y+z=0\}$ হয়. তবে S-এর একটি Basis হবে

a, bircl

- (A) {(1, 1, 1), (0, 0, 0)}
- (B) {(1,0,0),(0,1,0)}
- (C) $\{(-1, 1, 0), (-1, 0, 1)\}$
- (D) {(0,1,1),(1,0,1)}

If $S = \{(x, y, z) \in E^3 : x + y + z = 0\}$, then a Basis of S is

- (A) {(1, 1, 1), (0, 0, 0)}
- (B) {(1,0,0),(0,1,0)}
- (0) {(-1, 1, 0), (-1, 0, 1)}
- (D) {(0, 1, 1), (1, 0, 1)}

. m-সংখ্যক উৎস এবং n-সংখ্যক গন্তব্য বিশিষ্ট একটি পরিবহণ সমস্যার যে কোন সমাধানের Basic variable-এর সংখ্যা হবে

(A) m+n

(B) স্বনিম্ন (m+n)

(C) স্বাধিক m + n + 1

(D) সর্বাধিক m+n-1

111219

The number of Basic variables in any solution of a Transportation problem with m-origins and n-destinations is

(A) m+n

(B) minimum (m+n)

- (C) at most m + n + 1
- $1 \oplus 1$ at most m+n-1

 $x = ct^3$, $y = \frac{c}{t^3}$ বক্ররেখাটির কোন বিন্দুতে স্পর্শক y = 2x - 1 রেখাটির সমান্তরাল ?

(A) t = 0

(B) $t = -\frac{1}{2^{1/6}}$

(C) t=1

(D) কোন বিন্দুতেই নয়।

Tangent at which point of the curve $x = ct^3$, $y = \frac{c}{t^3}$ is parallel to the line y = 2x - 1?

(A) t = 0

(B) $t = -\frac{1}{2^{1/6}}$

(C) t=1

(D) at no point

34. यिन f(x) = kx(1-x), 0 < x < 1= 0, otherwise

অপেক্ষকটি কোন বন্টনের সম্ভাব্য নিবিড় অপেক্ষক হয়, তবে k-এর মান

(A) 2

(B) 6

(C) 4

(D) 8

If f(x) = kx(1-x), 0 < x < 1= 0, otherwise

is the probability density function of a certain distribution, then value of k is

(A) 2

JB) 6

(C) 4

(D) 8

38. $\frac{4}{3}$ -এর আসন্ন মান $1\cdot33$ ধরলে শতকরা ত্রুটি হবে

(A) 0·25

(B) 0·37

(C) 0·75

(D) 0·05

Taking 1.33 as an approximation to $\frac{4}{3}$, the percentage error is

JAT 0.25

(B) 0·37

(C) 0.75

(D) 0.05

111219

- 36. M ভরযুক্ত এবং α-ব্যাসার্ধ বিশিষ্ট একটি নিরেট গোলকের কোন স্পর্শকের সাপেক্ষে জড়তা ভ্রামক
 - (A) $\frac{7}{5}Ma^2$

(B) $\frac{2}{3} Ma^2$

(C) $\frac{5}{3} Ma^2$

(D) $\frac{2}{5} Ma^2$

The moment of inertia of a solid sphere of mass M and radius a, about any

 $(A) \frac{7}{5} Ma^2$

(B) $\frac{2}{3}Ma^2$

(C) $\frac{5}{3}Ma^2$

- (D) $\frac{2}{5}Ma^2$
- 37. একটি গোলক একটি অমসৃণ নততল বরাবর গড়িয়ে পড়ছে। যে কোন সময়ে গোলকটির উপর তলের লম্ব দিকে অভিঘাত R এবং তল বরাবর ঘর্ষণজাত বল F হলে (μ = ঘর্ষণ গুণাঙ্ক) প্রান্তিক সাম্যাবস্থার জন্য
 - (A) $F > \mu R$

(B) $F < \mu R$

(C) $F = \mu R$

(D) কিছই বলা যাবে না।

A sphere is rolling down a rough inclined plane. At any instant if R be the normal reaction on it and F be the frictional force along the plane (μ = coefficient of friction) then for limiting equilibrium,

 $(A) \quad P > \mu R$

(B) $F < \mu R$

 $F = \mu R$

- (D) nothing can be said.
- 38. একটি Binomal distribution-এর মধ্যক এবং সমক পার্থক্য যথাক্রমে 4 এবং $\sqrt{\frac{8}{3}}$ হলে, প্রচলিত

চিহ্নের জন্য n ও p-এর মান হবে

(A) n = 4, p = 1

(B) $n = 12, p = \frac{1}{3}$

(C) $n = 6, p = \frac{2}{3}$

(D) $n = 8, p = \frac{1}{2}$

The mean and standard deviation of a Binomal distribution are 4 and $\sqrt{\frac{8}{3}}$ respectively. With usual notations, values of n and p are

(A) n = 4, p = 1

(B) $n = 12, p = \frac{1}{3}$

(C) $n = 6, p = \frac{2}{3}$

(D) $n = 8, p = \frac{1}{2}$

111219

- 39. সমতলে বক্ররেখায় গতিশীল কোন কণার ক্ষেত্রজ বেগের মান
 - (A) $r\dot{\theta}^2$

(B) $r^2\dot{\theta}$

(C) $r\dot{\theta}$

(D) $\frac{1}{2}r^2\dot{\theta}$

The areal velocity of a particle moving along a plane curve has magnitude

(A) $r\dot{\theta}^2$

(B) $r^2 e^{-r^2}$

(C) $r\dot{\theta}$

 $(D) \frac{1}{2}r^2$

্রপত. নীচের সেটগুলির কোন্টি convex নয় ?

- (A) $X = \{(x,y): x^2 + y^2 \ge 5\}$
- (B) $X = \{(x, y) : |x| \le 3, |y| \le 2\}$
- (C) $X = \{(x,y): 5x y = 4\}$
- (D) $X = \{(x,y): 2x y \le 3\}$

Which of the following sets is not convex?

$$X = \{(x,y): x^2 + y^2 \ge 5\}$$

- (B) $X = \{(x, y) : |x| \le 3, |y| \le 2\}$
- (C) $X = \{(x,y): 5x y = 4\}$
- (D) $X = \{(x,y): 2x y \le 3\}$

 $\int_{0}^{\infty} e^{-x^2} dx$ -এর মান

(A) $\frac{\pi}{4}$

- (B) $\frac{\pi}{2}$
- (D) $\frac{1}{2}\sqrt{\frac{\pi}{4}}$

The value of the integral $\int_{0}^{\infty} e^{-x^2} dx$ is

- (A) $\frac{\pi}{4}$
- $\sqrt{2}$ $\sqrt{\frac{\pi}{4}}$

- (B) π
- (D) $\frac{1}{2}\sqrt{\frac{\pi}{4}}$

111219

42. মূলবিন্দুর সাপেক্ষে M ভরের একটি দৃঢ় বস্তুর কৌণিক ভরবেগের মান

Code: 19

Мυр (A)

(C)
$$Mvp + \frac{1}{2}MK^2\dot{\theta}$$

(B)
$$MK^2\dot{\theta}$$

(D)
$$Mvp + MK^2 \dot{\theta}$$

Angular momentum of a rigid body of mass M about origin is

(A) Mup

(B)
$$MK^2\dot{\theta}$$

(C)
$$Mvp + \frac{1}{2}MK^2\dot{\theta}$$

(D)
$$Mvp + MK^2 \dot{\theta}$$

 $\sqrt{23}$. $z=1+i anrac{3\pi}{5}$ জটিল রাশিটির মডিউলাস (r) এবং অ্যামপ্লিচ্যুড় (θ) হলো

(A)
$$r = \sec \frac{3\pi}{5}, \theta = \frac{3\pi}{5}$$

(B)
$$r = -\sec\frac{3\pi}{5}, \theta = -\frac{2\pi}{5}$$

(C)
$$r = -\sec\frac{3\pi}{5}, \theta = \frac{2\pi}{5}$$

(D)
$$r = -\sec\frac{3\pi}{5}, \theta = -\frac{3\pi}{5}$$

The modulus (r) and amplitude (θ) of the complex number $z = 1 + i \tan \frac{3\pi}{5}$ are

(A)
$$r = \sec \frac{3\pi}{5}, \theta = \frac{3\pi}{5}$$

(B)
$$r = -\sec \frac{3\pi}{5}, 0 = -\frac{2\pi}{5}$$

(C)
$$r = -\sec\frac{3\pi}{5}, 0 = \frac{2\pi}{5}$$

(D)
$$r = -\sec\frac{3\pi}{5}$$
, $0 = -\frac{3\pi}{5}$

 $\mathcal{A}4$. $(2x^2+y^2+x)\mathrm{d}x+xy\,\mathrm{d}y=0$ অবকল সমীকরণটির একটি integrating factor হবে

(A)
$$\frac{1}{x}$$

(B)
$$e^x$$

(C)
$$\frac{1}{xy}$$

An integrating factor of the differential equation $(2x^2 + y^2 + x)dx + xydy = 0$ is

(A)
$$\frac{1}{x}$$

(B)
$$e^x$$

(C)
$$\frac{1}{xy}$$

ঠ. যদি f(x)=|x|-|x| হয়, যেখানে [x] হলো x-এর অনধিক সর্বোচ্চ পূর্ণসংখ্যা তবে $f(-3\cdot 5)$ -এর

মান হবে

If f(x) = |x| - |x|, where |x| is the greatest integer not exceeding x, then the value of f(-3.5) is

MAI 7.5

(B) 0.5

(C) -6.5

2.5 (D)

46. ঘাত-বল হল

- বৃহৎ বল খুব অল্প সময়ের জন্য ক্রিয়াকালীন প্রয়োগ বিন্দুর সরণ ঘটায়
- বৃহৎ বল যে কোন সময়ের জনা ক্রিয়া করে
- ক্ষুদ্র বল হবে যদি অল্প সময়ের জন। ক্রিয়া করে
- বৃহৎ বল এত অল্প সময় ক্রিয়া করে যে ঐ সময়ে প্রয়োগ বিন্দুর সরণ ধর্তব্য নয়।

An impulsive force is a

- large force displacing the point of application while acting for a short time
- large force acting for any time
- (C) small force if acting for a short time
- large force acting for such a short time during which the displacement of

47.
$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} + \dots$$
 অসীম শ্রেণীটি

(A) অপসারী

(C) অভিসারী

(D) বদ্ধ নয়।

The infinite series $\frac{1}{2}$ $\frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} + \dots$ is

- (A) divergent
- (10) convergent

- (B) oscillatory
- 48. $r=ae^0$ বক্ররেখায় চলমান একটি বস্তুকণার কৌণিক বেগ ধ্রুবক হলে কণাটির অরীয় তুরণের মান

(C)

If a particle moves in the curve $r = ae^0$ with constant angular velocity, its radial

 ar^2 (C)

(D) a^2r

111219

49. মৃলবিন্দুকে স্থির রে পরিবর্তিত আকার হ	রথে আক্ষদুটিকে <i>xy-</i> সমততে বে	45°	' কোণে ঘোরাত	$\sqrt{x^2 - y^2} = a^2$	Code : 19 সমীকরণের
(A) $x'^2 + y'^2 =$	a^2				
(C) $2x'y' + a^2$	* O	(B)	$x'^2 + y'^2 + x$	$y' = a^2$	
যেখানে (x',y') হল	(x,y) বিন্দুর নতুন স্থানাদ্ধ		$x'y'=a^2,$		Alexander (S)
n che axes of	coordinates are rotate xed , the equation $x^2 - x^2$		ough an an	gle 45° in the	<i>xy</i> -plane
(A) $x'^2 + y'^2 = 0$ (C) $2x'y' + a^2 = 0$	α^2		x^2 changes to $x'^2 + y'^2 + x'$		
		/DV	$x'y'=a^2,$	0	-
where (x',y') are new coordinates of (x,y) . 50. সমতলীয় বলের অধীনে দৃঢ় বস্তুর সাম্যাবস্থার জন্য কাপ্পনিক কার্যের নীতিটি একটি					
(A) প্রয়োজনীয় শর্ত	5		ফ কাযের ন্যাতাট পর্যাপ্ত শর্ভ	একটি	
(C) কিছুই বলা যা	· ·	(D)	় প্রয়োজনীয় ও প	র্যাপ্ত স্কর্ম	
For equilibrium of Virtual Work is a	of a rigid body under a	syste	m of coplana	r forces, the pri	nciple of
(A) necessary co			sufficient con		
(C) nothing can		(D)	necessary an	d sufficient com	distri
51. একটি $n \times n$ matri	x A-এর যদি কেবলমাত্র একা	ট অশৃ	र्ग element था	ক তবে A-এর ran	ntion. k হবে
(A) 1		A Series A	0		
(C) n			n – 1		
If $n \times n$ matrix A has only one non-zero element, rank of A is					
UAT 1	,	B) ()		
(C) n	· •		1-1		
^{52.} Simpson-এর সংখ্যা	সংক্রান্ত $\frac{1}{3}$ rd নিয়মের সমাব	লন সৃ	ত্রের degree of	precision হল	
(A) 1	(B) 2			
(C) 3		D) 4			
	11121	9			7 of 24

The degree of precision of Simpson's $\frac{1}{3}$ rd rule for numerical integration is

(A)

- (B)
- (D)

53. একটি ম্যাট্রিক্স এবং তার transpose-এর গুণফল সর্বদাই

সিঙ্গুলার (A)

বিপ্রতিসম (B)

প্রতিসম (C)

যে কোন প্রকারের হতে পারে (D)

Product of a matrix and its transpose is always

singular

(B) skew-symmetric

symmetric

(D) may be of any type.

 $2\cdot1356$ সংখ্যায় আপেক্ষিক ত্রুটি $7 imes10^{-6}$ হলে সংখ্যাটিতে শুদ্ধ অঙ্কের সংখ্যা হবে

(A)

(B)

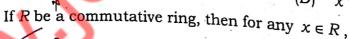
(C)

(D)

If relative error in 2.1356 is 7×10^{-6} , the number of correct digits of the number is

(A) 4

(C)


55. R যদি একটি commutative রিং হয়, তবে যে কোন $x \in R$ -এর জন্য

(B) $x^2 = 1^4$

(D) $x^3 = x$

 $x^3 = 1$